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DYNAMICS OF LIQUID MEMBRANES. 11: ADAPTIVE 
FINITE DIFFERENCE METHODS 

J. I. RAMOS* 
F. InformaticalE. T.S.I. Telecomunicacidn, Universidad de Mrilaga. Plaza El Ejido, E-29013-Malaga, Spain 

SUMMARY 
Two domain-adaptive finite difference methods are presented and applied to study the dynamic response of 
incompressible, inviscid, axisymmetric liquid membranes subject to imposed sinusoidal pressure oscil- 
lations. Both finite difference methods map the time-dependent physical domain whose downstream 
boundary is unknown onto a fixed computational domain. The location of the unknown time-dependent 
downstream boundary of the physical domain is determined from the continuity equation and results in an 
integrodifferential equation which is non-linearly coupled with the partial differential equations which 
govern the conservation of mass and linear momentum and the radius of the liquid membrane. One of the 
finite difference methods solves the non-conservative form of the governing equations by means of a block 
implicit iterative method. This method possesses the property that the Jacobian matrix of the convection 
fluxes has an eigenvalue of algebraic multiplicity equal to four and of geometric multiplicity equal to one. 
The second finite difference procedure also uses a block implicit iterative method, but the governing 
equations are written in conservation law form and contain an axial velocity which is the difference between 
the physical axial velocity and the grid speed. It is shown that these methods yield almost identical results 
and are more accurate than the non-adaptive techniques presented in Part I. It is also shown that the actual 
value of the pressure coefficient determined from linear analyses can be exceeded without affecting the 
stability and convergence of liquid membranes if the liquid membranes are subjected to sinusoidal pressure 
variations of sufficiently high frequencies. 
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INTRODUCTION 

In Part I' a non-adaptive procedure and a Lagrangian-Eulerian formulation were used to study 
the dynamic response of incompressible, inviscid, axisymmetric liquid membranes subject to 
imposed step and ramp changes in the pressure coefficient. 

It was shown in Part I that non-adaptive methods require that the largest convergence length 
of the liquid membrane be known before its dynamic response can be studied. It was also shown 
that the largest convergence length must correspond to the largest imposed pressure coefficient 
and that some grid points are never used in the calculations if non-adaptive grids are used to 
study the dynamics of liquid membranes. 

In this paper two adaptive finite difference methods are developed and applied to study the 
dynamic response of liquid membranes subject to imposed sinusoidal pressure fluctuations. These 
methods map the physical domain defined as the distance between the nozzle exit and the liquid 
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membrane convergence point (Figure 1) onto a fixed computational domain. This mapping 
automatically ensures that all the grid points are employed in the calculations; however, the time- 
dependent convergence length of the liquid membrane is unknown and must be determined as 
part of the solution. 

By appropriate integrations of the continuity equation from the nozzle exit to the liquid 
membrane convergence point, an integrodifferential equation for the convergence length can be 
derived. This integrodifferential equation contains the axial velocity and the mass (per unit length 
and per radian) of the liquid membrane at the convergence point and the total mass (per radian) 
of the liquid membrane; it is therefore non-linearly coupled with the four partial differential 
equations which govern the radius and the conservation of mass and linear momentum of the 
liquid membrane. This means that the adaptive finite difference methods presented in this paper 
require the solution ofjue differential equations as compared with the four differential equations 
solved by the non-adaptive procedures presented in Part I. 

Ramos’ has shown that for steady state liquid membranes exiting the nozzle with zero angle, 
there is a critical value of the pressure coefficient Cpn, beyond which the liquid membrane is either 
a cylindrical surface or never converges. It will be shown in this paper that the critical value of the 
steady state pressure coefficient determined from linear analyses can be exceeded if the liquid 
membrane is subjected to sinusoidal pressure fluctuations of sufficiently high frequency. These 
high frequencies result in oscillating membranes whose stability and response depend on the 
amplitude and frequency of the imposed pressure fluctuations and on the Froude number, 
convergence parameter and nozzle exit angle. 

The results of the adaptive finite difference methods presented in this paper are also compared 
with the non-adaptive techniques of Part I in order to assess their accuracy and efficiency in the 
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computation of the dynamic response of liquid membranes subject to imposed sinusoidal 
pressure oscillations. 

PROBLEM FORMULATION 

The non-dimensional equations governing the dynamics of isothermal, inviscid, axisymmetric 
curtains have been presented in Part 1.' For the sake of convenience these equations are written 
as 

au aF 
-+-=G (7 > 0, 0 < z* L* (T)), 
a7 az* 

where 

U = ( m * ,  R r ,  M* ,  N*)=,  (2) 
F = [ M * ,  R:M*/m*, M*'/m*, M * N *  I m* 1 9  (3) 

G =  [0, N*, Fr m* -(C,,R*R*'-J*')/N, ( -J*'/R*'+C,,R*)/NIT, (4) 

RO 4 m0ub We 
C , , = ( p i - p e ) ~ ,  F r = - ,  We=- N=Fr2 ,  

9Ro 2aR,' 

M*=m*u*, N * =m*u*, R: =m*R*. (7) 
Here T and z* denote the non-dimensional time and non-dimensional axial co-ordinate respect- 
ively, m* is the non-dimensional mass per unit length and per radian, M *  and N* denote the axial 
and radial momentum components per unit length and per radian respectively, Fr and We are the 
Froude and Weber numbers respectively, N is the convergence parameter, u* and u* denote the 
liquid membrane non-dimensional axial and radial velocity components respectively, R* is the 
non-dimensional radius, the primes denote differentiation with respect to z*, C,, is the pressure 
coefficient, pi and pe are the pressures of the gases enclosed by and surrounding the liquid 
membrane respectively, u is the surface tension, g is the gravitational acceleration, R,, u, and m, 
denote the (dimensional) radius, axial velocity component and mass of the liquid membrane per 
unit length and per radian at the nozzle exit respectively, the superscript T denotes transpose and 
L* denotes the liquid membrane convergence length, i.e. the axial location at which R*(z, L*) =O. 

Equation (1) is subjected to the following boundary condition at the nozzle exit: 

u(z,O)=[1,1,1,  (8) 

where 8, denotes the nozzle exit angle (Figure 1) .  
In this paper we study the dynamic response of liquid membranes to imposed pressure 

fluctuations, i.e. to C,, = C,,(T). The mixed convection-diffusion problem represented by equa- 
tion ( 1 )  is such that the solution of equation ( 1 )  must be obtained in the domain 0 <z* <L*(T), i.e. 
from the nozzle exit to the convergence of the liquid membrane. However, the convergence length 
L*(T) is not known in advance and must be determined as part of the solution. 

It was shown in Part I that L*(T) can be determined using non-adaptive and 
Lagrangian-Eulerian finite difference procedures. However, these methods require that the 
largest value of L*, i.e. L:,,, be known before the solution of equation ( 1 )  is obtained. 
Furthermore, the solution of equation ( 1 )  in fixed (non-adaptive) grids implies that the grid points 
located in the interval L*(r)Sz* I Lz,,are never used in the calculations. 



884 J. I. RAMOS 

In this paper we develop solution-adaptive methods for equation (1) as shown in the next 
section. 

ADAPTIVE METHODS 

The following domain-adaptive finite difference methods were used to solve equation (1). 

First method 

The domain 0 I z *  5 L*(T) can be transformed into a fixed one by means of the mapping 

where 

so that t > O ,  O s u s l  and 

Substitution of equation (1 1) into equation (1) yields 

where 

with 
aF H=- au (14) 

and I the unit matrix. 

block implicit iterative technique.' Note that the eigenvalue of H, is 
Equation (13) has the same form as equation (16) of Part I and can be solved by means of a 

which has an algebraic multiplicity of four and a geometric multiplicity of one. Therefore a 
similarity transformation of H, yields a Jordan canonical form which has A in the main diagonal 
and ones in the diagonal above the main d i ag~na l .~  Furthermore, equation (15) can be written as 

I - -  *-;* ( u*-vF "*) . 

Since u* is always greater than dL*,/dz, the eigenvalues given by equation (16) are strictly positive. 
It must be noted that u*(z, L*)#dL*/dT since u* represents the axial velocity of the liquid 

membrane whereas dL*/dz is the velocity at which the convergence point (Figure 1) moves. 
Analytical solutions of steady state liquid membranes' indicate that u* is proportional to the 

Froude number and, since 0 I I 1, A > 0. This allows one to discretize equation (1 1) by means of 
backward differences for the time derivatives, upwind differences for the convection terms and 
central differences for G. The resulting O(A5, Aq)-accurate finite difference equation for (12) can 
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be written as' 
- . c;+ + (I + c;+ l ) q +  = A ~ G ; +  + u;, (17) 

where 
C=HIA[/Aq. 

Equation (18) represents a block bidiagonal system which can be solved by forward substitu- 
tion in the following block iterative manner. The value of U;' was guessed and used to evaluate 
G:". Equation (18) was then solved and the value of U:+' was updated until 

where N ,  denotes the number of grid points used in the calculations, the superscript k denotes the 
kth iteration within the time step and the subscript i denotes the ith grid point, i.e. qi = iAq, where 
Aq is the spatial step size. Note that 

(Ui*k+ 1 - Ui*k)2 = (UTk + 1 - Ui*k)T(Ui*k + 1 - Ui*k). 

The block implicit procedure just described can easily be implemented in a computer 
programme; however, the value of L* which appears in equation (13) remains as yet unspecified 
and a procedure must be devised to calculate it. 

The value of L* can be calculated from any of the four equations represented in (1). For 
example, consider the first component of equation (l), i.e. 

am* a 
az az* 

-++(m*u*)=O, 

which represents the continuity equation. Equation (20) can be integrated from the nozzle exit 
(z* = 0) to the unknown convergence point (z* = L*(t)) to yield, after application of Leibnitz's 
rule, 

since m*(z, 0)= u*(z, 0)= 1 at the nozzle exit, and the integral one the right-hand side of equation 
(21) represents the total mass (per radian) of the liquid membrane. 

Substitution of equation (10) into equation (21) yields the following integrodifferential equa- 
tion: 

-- dL* dz - m * ( [ , q = l )  [A(L*jol dz m*dq)+m*(<,q=l )u*(c , s=L)1  1 , (22) 

whose solution yields the value of L*=L*(r). Note that the integral on the right-hand side of 
equation (22) is only a function of < and that z= g (see equation (10)). Note also that this integral 
and the values of m* and u* can be obtained from the solution of equation (17). 

Analogous expressions to equation (22) can be obtained from the third and fourth equations 
of (1). However, these equations contain complex integrals associated with the right-hand sides of 
the axial and radial linear momentum components. Note also that the first component of 
equation (1) can be written as (R: = m*R*) 

a a 
az aZ -(m* R*) +:(m*R*u*) = m*u*. 
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Integration of equation (23) from z*=O to z* =L*(r), application of Leibnitz's rule and use of 
the condition R*(z, L*)=O and of the continuity equation (see equation (20)) yield 

$joL* rn*R*dz*=joL* $(rn*R*)dz*. 

Second method 

defined by equations (9H1 l), which can be substituted into equation (1) to yield 
The second finite difference method used to solve equation (1) also employs the mapping 

av a 
a5 all 
-+-(ii*U) = L* G, 

where 

and U* is the relative velocity between the fluid and the 'accordion' grid q = z*/L*(r). Note that 
Osqs1 and that U*>O. 

Equation (25) can also be written as 

which can be solved by means of a block implicit iterative method with backward differences for 
the time derivatives, upwind differences for the second term on the left-hand side and central 
differences for the term L*G. The accuracy of this method, which is conservative, is O(A5, Aq). 
Note that the effective convection velocity in equation (27) is U*, which is greater than u* when the 
liquid membrane contracts, i.e. when dL*ldz < 0. 

Once the vector V is calculated from equation (27), the following operation can be performed to 
obtain U: 

(28) 
1 u=-v. 

L* 

The finite difference discretization of equation (27) requires the specification of L*. This value 
can be calculated from equation (22), which was solved by means of a first-order-accurate 
backward Euler method, i.e. 

where 

PRESENTATION OF RESULTS 

The calculations presented in this section were performed with At=O*Ol and used from 300 to 
400 grid points in the q-co-ordinate (0 I q s 1). The number of grid points was determined so that 
the results are grid-independent. The values of the parameters used in the calculations are 
presented in Table I. 
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Table I. Values of the parameters used in the calculations 

- 2 1 15 0 0 
4 1 15 0 0.5 Variable 
5 1 15 0 0.5 01 
6 Variable 15 0 0.5 01 
7 1 Variable 0 0.5 0 1  
8 1 15 Variable 0.1 0.1 
9 1 15 0 Variable 0.2 
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Figure 2. Numerical start-up of a liquid membrane 
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Figure 2 shows the numerical results corresponding to the start-up of a liquid membrane, i.e. to 
an initial condition 

UP, v )  = ( O , O , O ,  OIT. (3 1) 

This numerical start-up of the liquid membrane does not have any connection whatsoever with 
the physical start-up observed in the laboratory and is presented here to illustrate the robustness 
of the adaptive finite difference methods presented in this paper. Note that at c = O -  or t = O -  
there is no liquid membrane, and that the initial condition of equation (31) is not mathematically 
consistent with the boundary condition of equation (8). 

Figure 2 indicates that before the liquid membrane reaches a steady state condition, its profile 
exhibits a cusp point at the convergence point, i.e. at L*. A steady state was achieved whenever 

and the convergence length was defined as the axial location at which 
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Figures 4-9 show the dynamic response of liquid membranes to sinusoidal pressure coefficients 
such as the one shown schematically in Figure 3. These pressure coefficients can be written as 

C,, = Cpna sin(2nft), (34) 
where Cpna is the amplitude, 2nf is the circular frequency and t is dimensional time. 

Introducing the following non-dimensional groups (see Part I), 

St=fR,luo, = gtluo, (35) 

C,, = CP,,sin(2nStFrz), (36) 

equation (34) can be written as 

where St is the Strouhal number which represents the ratio of the frequency of the imposed 
pressure perturbation to a characteristic frequency of the liquid membrane. 

In Figures 4-9 the nondimensional convergence length has been normalized by that corres- 
ponding to steady state liquid membranes with C,, = 0, i.e. with respect to L,*, . 

Figure 4 shows the dynamic response of a liquid membrane to sinusoidal pressure coefficients 
whose amplitude Cpna is kept constant while the frequency of oscillation, i.e. the Strouhal number, 
is varied. For all the Strouhal numbers presented in Figure 4 the response of the membrane is 
rather sluggish initially. Furthermore, the response is rapid until the membrane convergence 
length reaches a maximum value. Beyond the maximum point the convergence length decreases 
rapidly to reach a shallow minimum. Thereafter the convergence length increases slowly to the 
steady state value corresponding to C,,=O and the cycle repeats periodically with the same 
amplitude and period as that of the pressure coefficient. This behaviour is to be expected since the 
liquid membranes analysed in this paper are inviscid and there is no viscosity in the system to 
damp out the oscillations. It can be observed that the lag time between the maximum of the Cpn- 
curve and the corresponding maximum of the convergence length curve is more than the lag time 
between the minimum of the C,,-curve and the minimum of the convergence length curve. It was 
seen in Part I that the response of membranes to decreasing pressure coefficients is quicker than 
the response to increasing pressure coefficients. The sharp drop in the convergence length and the 

Figure 3. Schematic of a sinusoidal variation of the pressure coefficient C,, 
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Figure 4. Normalized dimensionless convergence length as a function of the Strouhal number for a sinusoidal C,, 
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Figure 5. Membrane geometry at steady state (solid line), at the crest (dashed line) and at the trough (dashed-iotted line) 
of the response L*/Lb, curve 

non-identical crest lag time and trough lag time observed in Figure 4 can be attributed to this 
r e a s ~ n . ~  

The membrane profiles at steady state and at the extrema of the convergence length curve 
presented in Figure 4 are shown in Figure 5. Notice that the response for positive changes in C,, 
is greater than for decreasing Cpn, in agreement with the results presented in Part I. 
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The dynamic response of the liquid membrane for several values of the Froude number, 
convergence parameter and nozzle exit angle is shown in Figures 6-8, respectively, where L,*, 
denotes the steady state convergence length corresponding to C,, = 0. In all these figures the 
Strouhal number and the amplitude of the pressure coefficient were kept constant. Figure 6 shows 
how the convergence length increases as the Froude number is increased. It can be seen from 
equation (36) that for a fixed Strouhal number ( S t )  and other liquid membrane parameters, 
increasing the Froude number is equivalent to increasing the (non-dimensional) frequency of the 
imposed pressure fluctuations. As a consequence, the frequency of the convergence length 
oscillations increases as the Froude number is increased. The amplitude of the response curve, i.e. 
the peak value of the convergence length, decreases as the Froude number is increased. This 
implies that membranes with low Froude numbers are very sensitive to sinusoidally varying 
pressure coefficients, whereas membranes with higher Froude numbers are relatively more stable 
and can withstand higher amplitudes of oscillation of C,,. 

Figure 7 shows the dynamic response of the liquid membrane for several values of the 
convergence parameter. The effects of the liquid membrane inertia are clearly pronounced in this 
figure. High convergence parameters result in high inertia and hence near-zero amplitude, and the 
amplitude of the membrane oscillations increases as the convergence parameter decreases. In the 
limit N - r  00, i.e. 0-0, the oscillation amplitude dies down to zero. Notice that the period of 
oscillation of the convergence length curve is the same for all three curves. This is attributed to the 
fact that the Strouhal and Froude numbers are fixed (see equation (36)). 

The influence of the nozzle exit angle 8, on membranes subjected to sinusoidally varying C,, is 
presented in Figure 8. Large angles at the nozzle exit result in membranes exposed to the pressure 
difference over a greater area. This is the reason for the faster response of liquid curtains with 
higher values of O0. The converse holds for curtains with small nozzle exit angles. Again, since the 
Strouhal number is kept fixed, the period of the response curves remains unaltered by changes 
in 8,. 

rn t u l  

.;= ‘0 
_I 

0 0  
00 50 10 0 15 0 20 0 

r 

Figure 6. Normalized dimensionless convergence length as a function of the Froude number for a sinusoidal C,, 
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Figure 7. Normalized dimensionless convergence length as a function of the convergence parameter for a sinusoidal C,, 
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Figure 8. Nbrmalized dimensionless convergence length as a function of the nozzle exit angle for a sinusoidal C,, 

Linear analyses' of steady state liquid curtains predict that for Oo=O the critical pressure 
coefficient has a value of unity. For C,, < 1 the membrane converges, while for C,,> 1 the 
membrane diverges; and for C,, = 1 an infinitely long cylindrical annular membrane is obtained. 
In Figure 9 the Strouhal number is fixed at 0.2 and the amplitude of the pressure coefficient is 
varied. Figure 9 indicates that the maximum value of the convergence length for the case of a 
sinusoidally fluctuating pressure coefficient is less than that of a membrane at steady state with 
pressure coefficient equal to Cpna. Figure 9 also shows that the peak value of the convergence 
length curve decreases as the Strouhal number (frequency) increases. 
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Figure 9. Normalized dimensionless convergence length as a function of Cpn, for sinusoidal C,, 

The results shown in Figure 9 indicate that the oscillatory variation of the pressure coefficient 
coupled with the lagged response of the membrane results in the pressure coefficient 'felt' by the 
membrane always being less than Cpna. The extent to which the amplitude of the oscillating 
pressure coefficient is masked depends on the frequency of oscillation. The higher the frequency, 
the less is the effect of the pressure coefficient and the smaller is the peak of the convergence length 
curve. In the limit, as the Strouhal number tends to infinity, the peak tends to zero. 

It can be seen from Figure 9 that the amplitude of the pressure coefficient could be as high as 2.5 
times the critical value of unity determined from linear analyses' without affecting the stability of 
the membrane. Increasing the Strouhal number allows for the factor to be even higher than 2.5. In 
Figure 9 all the curves have the same period. This is expected since the period of oscillation 
(Strouhal and Froude numbers) of the pressure coefficient is fixed. 

The results shown in Figures 2 and 4-9 were calculated using the two adaptive methods 
presented in this paper and with the non-adaptive technique presented in Part I. The calculations 
corresponding to Figures 4-9 were started from steady state liquid membranes with Cpn=O and 
the pressure coefficient of equation (36) was imposed at z=O+. The two adaptive methods 
presented in this paper yield almost indistinguishable results; the differences in convergence 
lengths were less than 0.05%, whereas the differences between the non-adaptive' and adaptive 
finite difference methods were at most 15%. Note, however, that the non-adaptive methods of 
Part I did not use all the grid points, as indicated below. The adaptive techniques presented in this 
paper required more computer time than the non-adaptive methods of Part I. This difference in 
computer times was due to the integrodifferential character of the adaptive finite difference 
methods presented in this paper (see equation (22)). Note that equation (22) is coupled with 
equations (12) and (25) and that the adaptive methods presented in this paper require the solution 
of equations (12) and (22) or equations (22) and (25), i.e. five differential equations, as compared 
with the solution of the four differential equations of the non-adaptive methods described in 
Part I. However, the adaptive methods of Part I1 use all the grid points in the calculations and 
adapt the grid to the temporal variations of the downstream boundary of the computational 
domain, i.e. to the convergence point, whereas the non-adaptive methods of Part I do not use all 
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the grid points if L*(z) < Lgax; these non-adaptive methods also require that Lg,, be known 
before transient calculations are performed. 

The 15% difference between the results of the adaptive and non-adaptive methods can also be 
attributed to the fact that the adaptive methods use all the 300 or 400 grid points, whereas a lesser 
number of grid points was used by the non-adaptive techniques of Part I. 

CONCLUSIONS 

Two adaptive finite difference methods have been developed and applied to study the dynamic 
response of inviscid, incompressible, isothermal, axisymmetric liquid membranes subject to 
imposed sinusoidal pressure oscillations as a function of the Froude number, convergence 
parameter and nozzle exit angle. Both adaptive techniques map the time-dependent physical 
domain whose downstream boundary is unknown onto a fixed computational domain. This 
mapping results in a system of integrodifferential equations; their integrodifferential character is 
due to the dependence of the liquid membrane convergence length on the membrane mass. 

The two adaptive methods have been solved by means of a block implicit iterative technique 
which employs upwind differences for the convection terms, and yield almost identical results. 
Comparisons between the adaptive methods presented in this paper and the non-adaptive 
techniques reported in Part I' indicate that the differences between the adaptive and non- 
adaptive methods are approximately 15%. These differences are due to the fact that the non- 
adaptive methods do not use all the grid points in the calculations. However, the adaptive 
methods require longer computational times than the non-adaptive techniques because they have 
to solve five non-linearly coupled integrodifferential equations as compared with the four 
equations of the non-adaptive methods, and use more grid points in the calculations. 

It has been shown that the dynamic response of liquid membranes to imposed sinusoidal 
pressure fluctuations indicates that the critical value of the pressure coefficient determined from 
steady state linear analyses' can be exceeded if a periodic fluctuation of fairly high frequency is 
imposed on the pressure coefficient. For instance, if the Strouhal number is 0.2, for the values of 
the membrane parameters studied in this paper the amplitude of the pressure coefficient could be 
as high as 2.5 times the critical value of unity of the steady state linear analysis without altering 
the stability and convergence of liquid membranes. It was also shown that the amplitude of the 
membrane response decreases as the frequency (Strouhal number) of the C,,-curve increases. 
Parametric studies involving the membrane parameters, namely the convergence parameter N, 
the nozzle exit angle Oo and the Froude number Fr, show that the membrane response is 
controlled by inertia. However, unlike the response to step and ramp changes in C,, analysed in 
Part I, the response to sinusoidal fluctuations in C,, does depend on the Froude number (see 
equation (36)). 
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